

Tetrahedron Letters 41 (2000) 7605-7608

α-Glucosaminide synthesis: exercising stereocontrol at C1 or C2 via torsional effects or DeShong nucleophiles

G. Anilkumar, Latha G. Nair, Lars Olsson,[†] Jacquitta K. Daniels and Bert Fraser-Reid*

Natural Products and Glycotechnology Research Institute, Inc.,[‡] 4118 Swarthmore Road, Durham, NC 27707, USA Received 26 May 2000; revised 31 July 2000; accepted 1 August 2000

Abstract

The synthesis of α -glucosaminides may be carried out by installing synthons for the *cis*-related C1 and C2 functionalities in either order. When the C2 azide is installed first, α -glycosidation can be induced by using a 4,6-*O*-benzylidene ring to provide torsional control of anomeric selectivity. In the alternative option, the C1 linkage can be established by use of an *n*-pentenyl-*manno*-1,2-orthoester, the C2–oxygen of the resulting α -mannoside being replaced with inversion by use of DeShong's hypervalent silicon azide. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: hypervalent silicon azido nucleophiles; n-pentenyl glycosides; n-pentenyl orthoesters.

The laboratory synthesis of *cis*-1,2-glucosaminides, **2**, presents problems with respect to both the C1 and C2 stereocenters.^{1,2} Option A of Scheme 1 relates to C1, and in this connection, Paulsen and co-workers introduced a C2 azido group as the 2-amino precursor, e.g. **1**, in the expectation that being a non-participating entity, it would facilitate α -glycosidation.³ This seminal contribution has inspired novel synthetic approaches to C2 azido sugars,⁴ one of the most recent being Vasella's facile procedure for diazo transfer to amines.⁵ That development enabled us to employ pent-4-enoyl⁶ and tetrachlorophthaloyl (TCP)⁷ as protecting groups for preparing a variety of C2 azido sugars including **4a** and **7**.⁸

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01329-0

^{*} Corresponding author. E-mails: dglucose@aol.com, werowdies@hotmail.com

[†] Present address: Astra Zeneca, Stockholm, Sweden.

[‡] A non-profit organization at Centennial Campus (NC State University), Raleigh, NC, USA.

Scheme 1.

We were interested to determine the best donor-partner for the partially protected inositols $5(a^9 \text{ or } b)^{10}$ to obtain an α -product with good yield and selectivity. As indicated in Scheme 2a, the NPG 4a failed to undergo appreciable coupling with 5a; the material was therefore converted into glycosyl bromide, 4b, and trichloroacetimidate, 4c (Scheme 1), by standard procedures.^{11,12} With 4b, excellent α -selectivity was achieved by the Lemieux-halide assisted protocol,¹³ although the yield was disappointing.¹⁴ On the other hand, the yield of coupled products with the trichloroacetimidate 4c was very good; but the anomeric selectivity was problematic.¹⁵

Scheme 2.

Theoretical¹⁶ and experimental¹⁷ studies have shown that torsional factors strongly influence reactions at the anomeric center, and Crich and co-workers have applied this chemistry elegantly for controlling anomeric selectivities.¹⁸ In light of the abject failure with **4a** (Scheme 2a) the torsionally constrained benzylidene analog **7** was tested with acceptor **5b** and, in contrast to **4a**, was found to give a satisfactory yield of **8** with complete α -selectivity (Scheme 2b). Notably, *N*-bromosuccinimide had to be used as promoter, since the more potent combination (NIS/TESOTf)¹¹ caused cleavage of the benzylidene ring.

The routes in Scheme 2 are based upon the retrosynthetic strategy, option A, Scheme 1. The alternative, option B, could (a) take advantage of the ready formation of α -mannosides, e.g. 3, if (b) the resulting C2–OR could be replaced by an amino group with inversion of configuration. In order to explore option B, the *n*-pentenyl orthoester **9a**¹⁹ was coupled with the inositol **5a** to provide the α -mannoside **10a** (Scheme 3). The strategy of Lemieux and Gunner for stereocontrolled reduction of C2-oximo glycosides²⁰ was investigated with the derived oxime **10c**, but the borane reduction step proved too drastic for the substrate.

Scheme 3. Reaction conditions: i. **9a** (1.3 equiv.), NIS (1.3 equiv.), TBDMSOTf (0.3 equiv.), rt, 20 min, 78%; ii. NaOMe, MEOH/CH₂Cl₂, 14 h, 94%; iii. (a) DMSO/Ac₂O, rt, 24 h. (b) NH₂OH, HCl, NaOAc·3H₂O, H₂O/EtOH, rt, 14 h; iv. **9** (1.3 equiv.), NIS (1.3 equiv.), BF₃·OEt₂ (0.3 equiv.), 0°C, 20–30 min; v. (a) Tf₂O, DMAP, Pyr, CH₂Cl₂, -75° C-rt, 3 h; vi. TMSN₃ (1.5 equiv.), TBAF (1.5 equiv.), THF, 65°C, 14–24 h.

Nucleophilic displacement at C2 of α -mannosides is traditionally difficult,²¹ and so the complete failure of Mitsunobu displacement²² on alcohol **10b** was not surprising.

Binkley's triflate displacement procedure²³ has been successful elsewhere,² and in order to test this, the orthoesters **9a–c** were coupled with inositol **5b** to give **11a–c** in excellent yields, and without detectable contamination of β anomers (Scheme 3). Unfortunately, treatment of compound **12a** with sodium azide in DMF at room temperature gave only elimination products.

The recent report on the use of hypervalent silicon nucleophiles by DeShong and co-workers²⁴ was therefore timely. Particularly impressive were the quantitative displacements with β -phenethyl bromide, without β -elimination to give styrene. The triflates, **12a**–**c** were subjected to the hypervalent silicon azide as described by DeShong and co-workers. The TMSN₃/tetrabutylammonium triphenyldifluorosilicate (TBAT) reagent combination was problematic in that the product was contaminated with aromatic impurities. This outcome was avoided by use of the TMSN₃/TBAF combination, **14**, leading to the displacement products **13a–c** in good yields. These transformations could be easily monitored by analyzing the appropriate signals in the ¹H NMR spectra, (the parameters shown in Scheme 3 for **12a** and **13a** being typical) and the IR spectra, which showed the required absorption for the azido group at 2104 cm⁻¹.

In light of the widespread use of silicon protecting groups in carbohydrate transformations, success in obtaining the *tert*-butyl diphenylsilyl (TBDPS)²⁵ protected analogue **13c** is noteworthy.

In summary, the C2 and C1 stereocenters of α -glucosaminides can be cleanly established either by retrosynthetic option A or B (Scheme 1). For the former, the restraining effect of a 4,6-O-benzylidene ring can be used to induce α -coupling. For the latter, a *manno* NPOE ensures (a) clean α -coupling and (b) a convenient C2–ester ready to be replaced with a triflate leaving group for displacement with DeShong's hypervalent silicon azide.

Acknowledgements

We are grateful to the Research in Tropical Diseases (TDR) program of the World Health Organization, Affymax Research Institute, and the NIH (GM40171) for financial assistance.

References

- 1. Vos, J. N.; van Boom, J. H.; van Boeckel, C. A. A.; Beetz, T. J. Carbohydr. Chem. 1984, 3, 117-129.
- 2. Pavliak, V.; Kovac, P. Carbohydr. Res. 1991, 210, 33-337.
- Paulsen, H.; Stenzel, W.; Kolar, C. Tetrahedron Lett. 1977, 2785–2788. Paulsen, H.; Richter, A.; Stenzel, W. Carbohydr. Res. 1978, 64, 339–364. Paulsen, H.; Stentzel, W. Chem. Ber. 1978, 111, 2334–2347.
- Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244–1251. Kloosterman, M.; de Nijs, M. P.; van Boom, H. J. Carbohydr. Chem. 1986, 5, 215. Pavliak, V.; Kovac, P. Carbohydr. Res. 1991, 210, 333–337.
- 5. Vasella, A.; Witzig, C.; Chiara, J. L.; Martin-Lomas, M. Helv. Chim. Acta 1991, 74, 2073–2077.
- 6. Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 7920-7926.
- 7. Debenham, J. S.; Debenham, S. D.; Fraser-Reid, B. Bioorg. Med. Chem. 1996, 4, 1909–1918.
- 8. Olsson, L.; Jia, J. J.; Fraser-Reid, B. J. Org. Chem. 1998, 63, 3790-3792.
- 9. Anilkumar, G.; Jia, Z. J.; Kraehmer, R.; Fraser-Reid, B. J. Chem. Soc., Perkin 1, 1999, 3591–3596.
- 10. Elie, C. J. J.; Verduyn, R.; Dreef, C. E.; van der Marel, G. A.; van Boom, J. H. J. Carbohydr. Chem. 1992, 11, 715–739.
- 11. Fraser-Reid, B.; Udodong, U. E.; Wu, Z.; Ottosson, H.; Merritt, R.; Rao, C. S.; Roberts, C.; Madsen, R. *Synlett*, **1992**, 927–942.
- 12. Schmidt, R. R. In *Modern Methods in Carbohydrate Synthesis*; Khan, S. H.; O'Neill, R. A. Eds.; Harwood Academic Publishers: The Netherlands, 1996; Chapter 2.
- 13. Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. J. Am. Chem. Soc. 1975, 97, 4056-4062.
- 14. However for another assessment see: Baeschlin, D. K.; Chaperon, A. R.; Green, L. G.; Hahn, M. G.; Ince, S. J.; Ley, S. V. Chem. Eur. J. 2000, 6, 172–186.
- 15. However for another assessment see: Mayer, T. G.; Kratzer, B.; Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1994, 33, 2171–2181.
- 16. Fraser-Reid, B.; Wu, Z.; Andrews, C. W.; Skowronski, E.; Bowen, J. P. J. Am. Chem. Soc. 1991, 113, 1434-1435.
- 17. Andrews, C. W.; Rodebaugh, R.; Fraser-Reid, B. J. Org. Chem. 1996, 61, 5280-5289.
- Crich, D.; Cai, W.; Dai, Z. J. Org. Chem. 2000, 65, 1291–1297. Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435–436.
- 19. Roberts, C.; May, C. L.; Fraser-Reid, B. Carbohydr. Lett. 1994, 1, 89-93.
- 20. Lemieux, R. U.; Gunner, S. W. Can. J. Chem. 1968, 46, 405-411.
- 21. Richardson, A. C. Carbohydr. Res. 1969, 10, 395-402.
- 22. Mitsunobu, O. Synthesis 1981, 1-64.
- 23. Binkley, E. R.; Binkley, R. W. In *Preparative Carbohydrate Chemistry*; Hanessian, S., Ed; Marcel Dekker: New York, 1997; pp. 87–104.
- 24. Soli, E. D.; Manoso, A. S.; Patterson, M. C.; DeShong, P.; Favor, D. A.; Hirschmann, R.; Smith III, A. B. J. Am. Chem. Soc. 1998, 120, 435–436.
- 25. Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975-2977.